Customize Consent Preferences

We use cookies to help you navigate efficiently and perform certain functions. You will find detailed information about all cookies under each consent category below.

The cookies that are categorized as "Necessary" are stored on your browser as they are essential for enabling the basic functionalities of the site. ... 

Always Active

Necessary cookies are required to enable the basic features of this site, such as providing secure log-in or adjusting your consent preferences. These cookies do not store any personally identifiable data.

No cookies to display.

Functional cookies help perform certain functionalities like sharing the content of the website on social media platforms, collecting feedback, and other third-party features.

No cookies to display.

Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics such as the number of visitors, bounce rate, traffic source, etc.

No cookies to display.

Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.

No cookies to display.

Advertisement cookies are used to provide visitors with customized advertisements based on the pages you visited previously and to analyze the effectiveness of the ad campaigns.

No cookies to display.

Űrkutatási tesztlaboratórium nyílt az MTA Energiatudományi Kutatóközpontban

Új űrkutatási fejlesztő laboratórium és tesztlabor nyílt hétfőn Budapesten, az MTA Energiatudományi Kutatóközpontban.

Az űripar erősödése és a mikroműholdak világának robbanásszerű fejlődése egyre több űrtechnológiai teszt elvégzését teszi szükségessé, ezért született meg az MTA Energiatudományi Kutatóközpont új tesztlaborja, amelyben a műholdtesztelés szinte teljes folyamatát egy helyen lehet elvégezni. A saját forrásból, csaknem 100 millió forintból megvalósult fejlesztést hétfőn mutatták be a sajtó képviselőinek.

Budapest, 2018. március 26.
Mûszerész a Magyar Tudományos Akadémia (MTA) Energiatudományi Kutatóközpontjában nyílt ûripari tesztközpontban 2018. március 26-án.
MTI Fotó: Balogh Zoltán

A új labor és tesztközpont legfontosabb célja, hogy professzionális hátteret biztosítson az MTA EK űrkutatási tevékenységeihez, emellett plusz bevételi forrást jelent, hogy a tesztlaborban a saját fejlesztésű eszközök vizsgálata mellett ipari megrendeléseket is fogadni tudnak – mondta el az új labort bemutató sajtóbejáráson Zábori Balázs, az MTA EK Űrkutatási Laboratórium műszaki felelőse.

A tesztlabor egy csaknem pormentes légterű szoba, a tisztatér köré épül, ahol az Európai Űrügynökség által megkövetelt körülmények között vizsgálhatják és szerelhetik a készülő műholdakat. A tisztatér szomszédságában a felbocsátás viszontagságait szimuláló nagy teljesítményű rázópad, valamint az űr körülményeit visszaadó termovákuumkamra és klímaszekrény üzemel.

A termovákuum tesztlaborban az űreszközöket nagy vákuum és szélsőséges hőmérsékleti viszonyok esetére vizsgálják a tesztberendezésekkel. A vibrációs laborban pedig egy nagy teljesítményű rázógép segítségével a felbocsátás során fellépő erőket szimulálják. Hibás működés esetén a vizsgált űreszköz visszavihető a tisztatéri környezetbe, ahol ismét szétszerelhető és a hiba forrása kereshető.

Zábori Balázs elmondta, hogy a mikroműholdak világa nagy fejlődésen megy keresztül, nem ritka, hogy egy-egy rakétával több tucat, nagyjából cipősdoboz méretű műholdat állítanak pályára. Ilyen űreszköz volt a Masat-1, Magyarország első műholdja is. Az űrtechnikai eszközöket azonban szigorú tesztelést követően lehet csak az az űrbe küldeni.

„Az eddig érvényes űrkutatási irányelvek gyorsan változtak az elmúlt években. Amióta az Európai Űrügynökség tagjai lettünk, nagyon megszigorodtak az előírások, emellett saját projektjeink száma is jelentősen megnövekedett” – indokolta a laboratórium létrehozását a bemutatót követő sajtótájékoztatón, hozzátéve, hogy ezentúl számos űripari partnerük jelezte igényét egy hazai tesztlaboratóriumra.

Budapest, 2018. március 26.
Rázópadot kezel egy gyakornok a Magyar Tudományos Akadémia (MTA) Energiatudományi Kutatóközpontjában nyílt ûripari tesztközpontban 2018. március 26-án.
MTI Fotó: Balogh Zoltán

Mivel a műholdak tervezőinek nem éri meg saját tesztrendszereket fenntartani, a különféle teszthelyszínek között kellett oda-vissza szállítani a műholdat, ami jelentősen megnöveli a költségeket és az időt – magyarázta. Az új magyar űrtesztlaborban viszont szinte minden egy helyen megtalálható, egy helyen megvalósítható a tesztelés több fázisa, és a szereléseket is megfelelő körülmények között lehet elvégezni. Emellett új szolgáltatásként az intézetben az űrhajósokra és a technológiára is veszélyes kozmikus sugárzásról komplex sugárzási analízist is tudnak majd készíteni.

Pócza András, a Nemzeti Fejlesztési Minisztérium fontos mérföldkőnek nevezte az európai színvonalú központ létrejöttét, hozzátéve, hogy az új űrtechnológiai tesztközpont jelenleg egyedülálló hazánkban. Mint hangsúlyozta, a fejlesztés segít abban, hogy a magyar űrkutatás szereplői meg tudjanak felelni a nemzetközi űrkutatás egyre változó és egyre erősebb kihívásainak.

Horváth Ákos, az MTA EK főigazgatója a laboratórium létrehozását a tudásátadás szempontjából nevezte jelentős mérföldkőnek. Felidézte: a magyar űrkutatás múltja a 70-es évekre nyúlik vissza, így az MTA EK, Űrdozimetriai Kutatócsoportjában 48 éve zajlik űrkutatási célú tevékenység elsősorban a kozmikus sugárzás és az űridőjárás vizsgálatára.

Hirn Attila, az MTA EK, Űrdozimetriai Kutatócsoport vezetője megemlékezett arról, hogy az első magyar űreszköz, amely szintén az intézetben készült 1970-ben, a Tánya fóliás mikrometeorit-csapda volt, azóta számtalan magyar vagy magyar közreműködéssel épített műszer jutott el a világűrbe. Az űrhajósok sugárvédelmét szolgáló Pille dózismérő-rendszert például ma is használják az űrhajósok a Nemzetközi Űrállomás fedélzetén, a NASA űrhajósai mind a mai napig kiviszik sétára a hordozható mérőműszereket. A többi között megemlítette még, hogy készítettek energia-spektrométereket a VEGA és Rosetta üstökös-szondákra és a Phobos Mars-szondákra. Jelenleg pedig a RADCUBE projekten dolgoznak, amelynek célja a kozmikus sugárzási és űridőjárási környezet valós idejű megfigyelése. A berendezés demonstrációs küldetése várhatóan 2019 végén 2020 elején fog megvalósulni.